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ABSTRACT

In developing turbulence models, different authors have proposed various model con-

straints in an attempt to make the model equations more general (or universal). The most

recent of these are the realizability principle (Lumley 1978, Schumann 1977), the linearity

principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and the material indif-

ference principle (Speziale 1983). In this paper we will discuss several issues concerning

these principles and will pay special attention to the realizability principle raised by Lum-

ley (1978). Realizability (defined as the requirement of non-negative energy and Schwarz'

inequality between any fluctuating quantities) is the basic physical and mathematical prin-

ciple that any modeled equation should obey. Hence, it is the most universal, important

and also the minimal requirement for a model equation to prevent it from producing un-

physical results. In this paper we will describe in detail the principle of realizability, derive

the realizability conditions for various turbulence models, and propose the model forms

for the pressure correlation terms in the second moment equations. Detailed comparisons

of various turbulence models (Launder et al. 1975, Craft et al. 1989, Zeman and Lumley

1976, Shih and Lumley 1985 and one proposed here) with experiments and direct numeri-

cal simulations will be presented. As a special case of turbulence, we will also discuss the

two-dimensional two-component turbulence modeling.



1. Introduction

It is commonly accepted that the Navier-Stokes is the basic equation governing tur-

bulence. Hence, without any model approximations, direct numerical simulation (DNS)

should be an ideal approach to study all the aspects of turbulence. For example, using DNS

we may study the dynamics of various turbulence structures; the mechanisms of energy

transfer; and the interaction between different size of eddies; and we may also look at the

various one-point and two-point statistics. Unfortunately, DNS is limited to relatively low

Reynolds number and simpler flows due to a wide range of length and time scales that are

present in a turbulent flow and due to today's computational limitations (both computer

hardware and numerical methods). Therefore, at present, DNS is far from computing

the practical engineering problems. For solving general engineering problems, turbulence

modeling must be used in conjunction with the CFD. The history and the literature of

turbulence modeling is described in detail by Lumley (1978,1983), Reynolds (1976), Laun-

der (1989) and Rodi (1988). All the model equations were designed to approximate the

Navier-Stokes equations. The model coefficients (or constants) have been tuned against

some basic turbulent flows. The accuracy of any model equation (if it works) varies from

flow to flow. In addition, we must use them with caution because any model equation will

miss some of the physics or violate some of the properties of the Navier-Stokes equations

because of the approximations made. Results in such cases may be misleading in studying

unknown turbulence phenomena. More severely, some of the model equations may end up

with unphysical results, such as negative turbulence kinetic energy, etc.

For constructing turbulence models, various model constraints have been proposed

by different authors in an attempt to make the model equations as general (or universal)

as possible. Most recent of these are, the realizability principle (Sclmmann 1977, Lumley

1978), the linearity principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and

the material indifference principle (Speziale 1983). However, some of the above mentioned

principles are not universal. For example, the material indifference principle is not valid for

general turbulence in which the fluctuating velocities are three dimensional. The material

indifference is valid only for strict 2D-2C (two dimensional and two velocity component)

turbulence which rarely occurs or probably does not exist in nature which is described by

three dimensional space. Speziale et al. (1987), in their DNS experiments, found that rapid

rotation had no influence on the isotropy of the 3D-3C homogeneous isotropic turbulence.

So far, there is no evidence which shows a 3D-3C fluctuating velocity field will evolve to

a strict 2D-2C state under any conditions. Therefore, the material indifference (or frame

indifference) principle need not be considered in 3D-3C turbulence modeling. In addition,

as we will see later, for strictly 2D-2C turbulence the frame indlffcrence principle principle

will be automatically satiSfied and does not provide any additional or new constraints

for turbulence models. In another study, Reynolds (1987) also showed that in 3D-3C

turbulence modeling, at the 2D-2C limit, the frame indifference principle does not provide

any new model constraints and it also seems to be irrelevant to the modeling of the effect

of the rotation on turbulence (see the RDT described later).



The principle of linearity is also not universal, as it holds only for passive scalars.
It was pointed out by Pope (1983) that since the governingequations for passivescalars
are linear, the modeled equations for these quantities should possessthe sameproperty.
However,someof the models for the pressurecorrelations are nonlinear. The calculations
of slightly heated turbulent jets (in which the temperature is a p_sive scalar) with such
models (Shih et al 1990)show that the violation of this principle doesnot causeproblems
since the results agreedwell with the experimental data (also seeLumley 1983).

Rapid distortion theory (RDT) is a convenient tool for studying the asymptotic be-
havior of turbulence under the rapid distortion of the mean flow. For example, effect of
the mean flow (say strain rate) on turbulence. For somesimple homogeneousflows 1RDT
can provide an analytical solution (Reynolds 1987), henceenabling us to calculate the
model terms of interest in the secondmoment equations. One may naturally ask if we
can use these results to calibrate the model coefficients appearing in the corresponding
model terms. Unfortunately, the answer is not very positive. RDT equations are valid
only for very high meanstrain rate or very low turbulent intensity aad in both thesecases
the turbulence is in a very non-equillbrium state with the mean flow field. On the other
hand the secondorder modeling is basedon the assumption that the turbulence is more
or lessin an equilibrium state and is mainly characterizedby one velocity and one length
scale(Lumley 1983). Therefore, RDT results are probably not appropriate for tuning the
coefficientsof secondorder models. An interesting illustration of this point is made by
Shih et al. (1990) who showedthat a model constant in the linear form of rapid pressure
strain model (Launder et al 1975) determined by matching I1DT results is much worse
than the one determined from measurements.However this does not mean that RDT is
uselessin turbulence modeling. On the contrary, RDT can provide the asymptotic behav-
ior of turbulence at the RDT limit. In many cases,we may obtain analytical expressions
which explicitly show the relations between turbulence and the mean flow field. For ex-
ample, the RDT results (Reynolds 1989)for pure meanrotation show a clear effect of the
mean rotation on the anisotropy of turbulence (bij = uiuj/q 2 -- _ij/3) through its second

invariant. However, all the existing rapid pressure strain models (including the one which

satisfies the material indifference at the 2D-2C limit) fail to exhibit any effect of rotation

on the second invariant of bij. In this case, RDT will certainly guide us in removing this

deficiency from the existing models.

Realizability (defined as the requirement of non-negative energy and Schwarz' inequal-

ity between any fluctuating quantities) is the basic physical and mathematical principle

that any governing equation should obey. Hence, among all the above mentioned model

constraints, realizability is the most universal, important and also the minimal requirement

for the turbulence model equations to prevent them from producing unphysical results. Re-

alizability can be applied to various turbulence quantities, for example, Reynolds stresses

uiuj, scalar fluxes ui"-'0and the triple correlations. For one-point second moment equations,

realizability for uiuj and ui"-"Ois the most important. In this paper (section 3, also see Shih

and Lumley 1985) we will describe the principle of realizability, derive the realizability

conditions for various model terms, and propose the model forms for pressure correlation



terms in the second moment equations. The comparisons of various turbulence models

with DNS and measurements will be presented in section 4. However, first we will discuss

the 2D-2C turbulence.

2. Two-Dimensional Two-Component Turbulence

Reynolds and Grau (1988) argued that if one component of velocity is suppressed and

turbulence becomes 2C, the turbulence will not stay in the 2C state unless the turbulence

also becomes two dimensional (2D). In the DNS experiment, SpcziMe ct al (1987) were

expecting that the homogeneous isotropic turbulence would become anisotropic under the

action of rapid rotation. However, their results did not show any such trend. Can a

wall bounded inhomogeneous turbulence become strictly 2D-2C turbulence under rapid

rotation? In a three dimensional space, it seems unlikely that the instantaneous turbulent

velocity field will become strictly or exactly 2D-2C turbulence. However, if we confine

a flow to a two dimensional space, as in the "thin soap sheet film", then it may be possible

to obtain a 2D-2C turbulence. Numerically it is always possible to simulate such a special
"turbulence".

In this section, we will derive a 2D-2C turbulence model for the rapid pressure corre-

lation term in the Reynolds stress equations (also see Reynolds 1987) and will show that

the frame indifference principle does not provide any model constraints.

The Reynolds stress equation can be written as

D

--"-==-'Dtu,Uq= ... + Tiq - 2ui_i,kuq,k (2.1)

where

Ti___z= 2Up,i[Mi.q+ Mqipi] (2.2)
q2

D

corresponds to the rapid part of pressure correlation term, and q2 = uiui. For homogeneous

turbulence, Mijpq can be expressed as

1 /K kpk'---AqMijpq = _ k2 Eij(k)d2k (2.3)

where ki is the wave number vector and Eij is the spectrum tensor.

As usual, we assume that Mijpq is a function of the anisotropic tensor bit, and then

the most general tensor form of Mijpq (which satisfies the symmetry in indices) will be



where,

Mijpq -" al_ij_pq 4- a2(C_ip_jq + _iq_jp) + a3_ijbpq 4- a4_pqbij

4- a5(_ipbjq + _iqbjp 4- _jpbiq + _jqbip)

4- a6bijbpq + aT(bipbjq + biqbjp)

UiU j 1

(2.4)

(2.5)

These give us the following relations between the coefficients:

al + 3a2 - IIa6 - IIa7 = 0

a3 + a4 + 4a5 = 0

2al + 2a2 - 2Iia7 = 1/2

2a4 + 4a5 = 1

The coefficients al, a2, a3 and a 4 can be solved in terms of as, a6, and aT:

al --- 318+ SS(a7- a6/2)
a2 = --I18 + IIa612

as = -1/2- 2a5

a4 --- 1/2 - 2a5

Therefore, the tensor Mijpq becomes

(_pqbi j -- _ijbpq)

1

Mijpq ._- (3t_ijt_pq -- _ip_jq -- _iq_jp) 4- "_

+ a6[bijbpq - fI_ij_pq/2 4- I._(_ip_jq 4- 6iq_jp)/2]

4- aT(bipbjq + biqbjp 4- II6ijgpq)

where a5 drops out because of the following zero tensor:

6ipbjq "4- 6iqbjp "4- gjpbiq 4- _jqbip - 2_ijbpq - 2_pqbij _ 0

5

(2.7)

(2.8)

(2.9)

(2.10)

Mpjpq = 0

Mijpp = bij 4-6ij/2 (2.6)

6ii = 2

II = -bijbij/2

Because of the Cayley-Hamilton theorem in a 2D space, bi_ 4- IIgij = O, the higher powers

of bij are not required. Seven coefficients ai are, in general, function of the invariants of

bij. From the continuity and definition of Mijpq, we have



Using (2.9), the Eq.(2.2) becomes

Ti..__.q= Siq + 4(06 + 2a7)biibpqSvi + 2_qjbij + 2flijbjq
q2

where we have used the following relation:

4IISiq + [4biqbjp - 2(bijbpq + bipbjq)]Spj = 0

Equations (2.10) and (2.12) can be easily checked in the principal axes.

(2.11)

(2.12)

For the 2D-2C turbulence, the turbulence equation should be frame indifferent

(Speziale 1983). If we write Eq.(2.1)in a non-inertial coordinate system (designated by *)

which is rotating with an angular velocity _k, we obtain

D ..
"-_uiuq = 2(Vp,j)*[Mijpq + Mqjpi]* q:* + uui,kUq,k*...

-- 2¢jik_kU--'_* -- 2¢jqk_kU--'_z* (2.13)

- epjk_k[Mijpq + Mqjpi]*q_*

In order for this equation to be frame-indifferent, the last two lines must cancel each other.

This gives us the necessary constraint on the model form of _Iin, q and the result is

a4 - a3 = 1 (2.14)

However, this condition is already satisfied by the coefficients (2.8) and hence the frame

indifference principle does not provide any additional constraints. Therefore, in general

there is still one undetermined coefficient a6 + 207 in (2.11) and it must be determined from

experiment, direct numerical simulation or some other source. However, we may explore

its limiting value by using 1C condition. The condition of _'_ijpq at the limit of ua = 0

gives Mljpq = 0 for any j, p and q (because El1 = 0). This condition gives

a6 + 2a7 = -1 if bll = -1/2, (or ul = 0) (2.15)

However, we must note that in general 2D-2C flows, the value of a6 + 2a7 is unknown and

not necessarily -1. The limiting value of the above coefficient can also be obtained by

using the realizability conditions (3.4 a,b,c) described in the next section. Interestingly

enough such an analysis also gives a6 + 2a7 = -1.

3. Three-Dimenslonal Three-Component Turbulence.

It is commonly thought that the turbulence in a three dimensional space is always

three dimensional (Tennekes and Lumley 1972) with three components of velocity. How-

ever, there are situations where the turbulence is considerably suppressed in a certain



direction. For example when turbulence approachesa solid wall, the fluctuating velocity

component normal to the wall will be mostly suppressed and the turbulence will become

3D-2C. However, during this process, all the turbulent energy components should remain

non-negative and Schwarz' inequality should always be satisfied. This is the concept of

realizability. In this section, we will discuss realizability in detail and discuss the model

development of pressure correlation terms in the second moment equations.

3.1 Realizability Concept.

In the second order closure, model equations for the turbulent stresses uiuj and scalar

fluxes Oui are proposed. Realizability for both of these quantities has been discussed

in Lumley (1978). To see the realizability concept, let us consider any two fluctuating

variables a and b, and their correlation matrix:

a ab Iab b2

The simple fact that a-'_ >__0, b-_ >__0, and that Schwarz inequality a 2 b2 -_-_2> 0 should

be satisfied by any set of equations governing the evolution of a 2, b2, and ab is called

realizability. A set of equations violating this principle could produce unphysical results.

We will show that these three realizability constraints translate to the single requirement

that the eigenvalues of the correlation matrix should remain non-negative. We will now

show that if any one of the above three in-equalitles becomes an equality, then one of

the eigenvalues of the matrix will vanish. Therefore, by ensuring these eigenvalues from

becoming negative will automatically ensure a 2 , b2, (a 2 b2 - _--_2) fi'om becoming negative.

This implies that while constructing governing equations for a, b and their correlations,

we need to check only the eigenvalues of the correlation matrix. The non-negativity of the

eigenvalues of the matrix can be easily seen from their expression:

 1,2= (1/2){(a2+ + + - 4(a - } (3.1)

Eq. (3.1) shows that A2 will vanish if one of the following conditions occurs:

a 2 --- 0,

b2 = 0,

a2 b2 __2 = O.

Now, let us take the derivative of (3.1) with respect to time t,

(Aa,2),, = (1/2){(_',, + _,t)

4- (a2 + b2)(a2't + b''_'') - 2[(a2)'tb2 + a2 (b2)'t - 2ab (ab),t] }

[(a 2 + b2) 2 - 4(a 2 b2 _ _-_2)]1/2

(3.2)

7



To preserve the positive A2, we must require

(A2),t >_ O, if A2 = 0 (3.3a)

or

[a 2 b2 _ _-_2],t
>_0, if A2=0 (3.3b)

From this necessary condition, it is straight forward to show that

m

a2,t >_0, if a s=0 (3.4a)

b-f,t >_ O, if b-_= O (3.4b)

(a 2 b2 - a'b2),t _ 0, if a s b 2 - _-_2 = 0 (3.4c)

It is clear that (3.4) is the necessary condition for the quantities a s, b2 and a 2 b2 -

_--_2 to remain non-negative, therefore, the condition (3.3a) is the necessary condition for

realizability. To find the sufficient condition for realizability, we must examine the higher

order derivative of the eigenvalue when it vanishes. For example, we may require

(As),t, _> 0, if As = 0. (3.5)

For more details on this aspect see the review paper by Lumley (1983).

Similar arguments can be applied to the turbulent stress tensor uiuj and to the cor-

relation matrix formed with a scalar t9 and velocities ui. Realizability for tensor uiuj

is straight forward, that is, its eigenvalues must be positive, which will cnsure positive

turbulent energy components and the Schwarz inequality between fluctuating velocities.

Realizabiiity for the correlation matrix of scalar and velocity is described by Eq. (3.1) and

(3.3) and is not as simple as for the Reynolds stress. Lumley has suggested a more general

quantity Dij consisting of turbulent stress and flux: Dij = 92 uiuj - Oui 9uj. It can be

shown that realizability for the correlation matrix between the velocity and the scalar will

be ensured provided that the eigenvalues of Dij are positive.

It is interesting to note that if u_ _ 0 then the a direction will become one of the

principal axes of uiuj, and _ (no summation on Greek indices) becomes one of the

eigenvalues of uiuj. At the same time, us _ 0 will make Dsa _ 0, and the a direction

also becomes one of the principal axes of Dij. Dss is then a vanishing eigenvalue of Dij.

However Dos will also vanish without u,_ ---, 0 if the perfect correlation between f and

us is reached. Therefore, we conclude that if one of the eigenvalucs of uiuj, say uo, us,

vanishes, then D_,_ will become a vanishing eigenvalue of the tensor Di.i. However, the

reverse is not true i.e. if Dss _ 0, it does not mean that _ (or 9 _) must vanish. This

is important in the modeling of scalar turbulence, as it indicates that reatizability based

on uiu"'_ alone is not enough and we must also consider the joint realizability based on Dij

to ensure that the model equations do not produce unphysical results.



3.2 Realizability Conditions for Second Order Closure Models

The ideas discussed above can now be applied to the second moment equations to

obtain the realizability conditions. The general form of the model equations for the second
moments can be written as follows

D

--_uiuj = - [ uiujuk - C(q2ui_jk -4-q2uj$ik) ],k

vi,k + u,,k) + 2Vp,q(Xpj¢+ Zpiq )
-- _k(Ykij "4- Ykji) - (_ij "4- 2,Sij/3)e

+ fiiOu I + fljOui (3.6)

"_OUi ---- -- [OUiUk -- CtOq2_ik],k -- (OukUi,k + u--i_.®,k ) + _iO 2

+ 2Uj,kXijk - _kYik -- ffie/q -i (3.7)

=- (02uk),k-- 0,k- 2,0 (3.8)20u-"_

where we have followed Lumley (1978) for the pressure transport model and in combining

the anisotropic part of the dissipation terms with the slow part of the pressure correlations.

The molecular diffusion terms in the above equations have been neglected. The definitions

of the rapid pressure correlation terms Xpjqi and Xijk; the buoyancy terms Ykij and Y/n;

and the slow terms _ij and q'i are listed in appendix A. In the above equations fli is the

buoyancy vector, 19 is the mean scalar and 0 is the fluctuating scalar.

To impose realizability into the above equations we may write the equations of uiuj

and Dij in their principal axes, i.e., the equations for uaua and Da_. Then in order

to ensure that the eigenvalues of u_u_ and D_a remain positive during the evolution of

turbulence, the following constraints must be satisfied

D

D---_u_u_ _ 0 if u,_u,_ _ 0

1-) D _0 if D_ _O
Dt _

(3.9)

D 2

Dt----_u_u_ >_ 0 if u_u_ _ 0

D 2

Dti D_ >_ 0 if D_a --* 0

(3.10)

Substituting (3.6)-(3.8) into (3.9) we obtain the following necessm-y realizability conditions

for Xpjqi, Xijk, Yikj and Yik:

Up,qXpc_qot _ 0

if u_ ---} 0 (in p.a. of Rij)

9



Up,q(O-2Xpotqot -- OttolXotpq) _ 0

if D,_,_ ---. 0 (u_ # O) (in p.a. of Di./)

Up,qOuc_Xc, m

zf Do,_, u_ --, 0

---*0

(in p.a. of Dij, Rij)

Y,_a,_ - Ou,_ _ 0

fD,_,,-_ _ 0 (in p.a. of Dij,nii)

Y-_.. (_¢o0 -.o
if O,_o,,u_ ---* 0 (in p.a. of Oi.i,Ri.i)

-_Y_c, -Ou_,Yk_, (any k) ---* 0

if Oo,_ _ 0 (u_ # O) (in p.a. of Dij)

m

Ou,_Y,_,_- 020u,_

if

_0
m

D,_o,,u_ _ 0 (in p.a. of Dij,Rii)

o,.,Y.,_ (.y ¢ _) --, o

if O,_,_,u_ _ 0 (in p.a. of Oij,Rij)

(0o,,_ + 2/3)e ---, F _

if u_ _ 0 (in p.a. of Rij)

m

20u,_O,_e/q 2 - 02(¢,_o, + 2/3)e - 2eo__

if D,_, --, 0 (u_ # O) (in p.a. of Dij)

zo-C¢.,/_-- 2_o_ + _F ° _ F_

if Do,_, u 2 _ 0 (in p.a. of Dij,Rij)

(u_uk - 2Cq2uo,_o,k),k _ 0

if u_ _ 0 (in p.a. of Rij)

20uc,(Ouc, uk - C'-qT"O _,_k ),k

-- 02(u2uk -- 2Cq2u_,6,_k),k --u_(Ouk),k

--.

--,0

10



if Do, c, ---* 0 (_a # O) (in p.a. of Dij)

m

20Ua(OUaUk -- C'q 20 _ak ),k -- U2a(OUk ),k

if D,_,_,u_ ---, 0 (in p.a. of Dij,Rij)

_0

These constraints will be used in the next section in constructing the models for

pressure-correlations.

3.3 Modeling of the Rapid Pressure-Correlation Terms

First let us look at the rapid terms associated with the mean strain.

property of these terms requires

Xpjqi = Xjpqi, Xpjqi = Xpjiq, Xijk = Xjik

The symmetry

If we assume that Xpjqi i_._.sa function of _ only and that Xij k is a function of both

uiuj and Oui, but linear in Oui, then the most general forms of Xvjqi and Xijk satisfying

the above symmetry constraints are

Xpjqi /7

+

+

+

+

+

O_l _qi_pj q- Ol2( 6pq_ij "4- _qj_pi ) "q- ol3_qibpj "_- o'4 _pjbqi

o_5(_pqbi j + _ijbpq q- _jqbpi + _pibqj) "q- ol6_qib2pj + oz7_pjb2qi

2 2 2
o_8(_pqbi 2 + 6ijbpq + _jqbpi + t_pibqj ) + cr9bqibpj

2 2
Oqo(bpqbij + bqjbpi) + oQlbqibpj + oQ2bpjbqi

2 2 2
oq3(bpqb2j "4- bijbpq + bqjbpi + bpibqj)

2 2 2 2 2 2
oq4bqibvi + Oqs(bvqbi j + bqjbvi) (3.12)

Xikj =

+

+

+

+

+

+

m

t_l ¢_ikOUj "4- fl2( _ijOUk Jr- _jkOUi ) -{- fl3bikOUj

fl4(bijOUk "q- bjkOUi) + fl5(_ijbkp -4- 6kjbip)OUp

f166ikbjvOu p + flvbikbjpOu p + fls(bijbkp + bkjbip)Oup

2
_9b2k-_Uj -4- fllo(b2jOUk + b_kff_Ui ) -4- _ll_ikbjpOlZp

_12((_ijb2kp "_- _jkb2p)OUp _- /_13 2 b2pOUpbikbjpOup + ill4 bik

2 2 2 2 2 2
_17bikbjvOup + flas(bijbkv + bk3biv)Oup (3.13)

Where a's are, in general, functions of the second and third invariants (i.e. II and III_____))

of the anisotropic tensor bij and fl's are functions of the invariants formed by bij and Oui

11



in addition to II and III. From the definition of the rapid terms and incompressibility,
following properties are obtained:

Xppqi _-- UqUi, Xpkqk : O, Xii k : OUk, Xikk : 0 (3.14)

Using these properties and the realizability conditions given in the last section we can

determine the limiting values of all the model coefficients provided we ignore the terms

with the fourth powers of bij (which is a reasonable assumption since the magnitude of

bij is always less than unity). The final expressions of the Xpjqi and Xijk reduce to the

surprisingly simple forms and are given by

1 1
Xpjq,/q -_

= _60(4_pj_qi- _pq_ij -- _qj_pi)- _(_qibpj - _pjbqi)

116 b 4"_ al(_pqbij -J- _ijbpq "4- _qjbpi "4- _pibqj - T qi pj - t_pjbqi)

+ a2(26pjb_i - 3bpqbij - 3bqjbpi + bqibpj) (3.15)

+ CDlbijOUk

+ CD2(bikOUj 4- bjkOui) -4- CDa_ijbklOUl (3.16)

where the limiting values of the coefficients are

a 1 _ _

1 1 1 3 1

10 a2 = "i'O' CD1 = "_-_, CD2 10 D3 5

The last line in both (3.15) and (3.16) represents the non-linear contribution, and

if neglected, the linear models used by various other workers will be recovered. It is

important to note that the above values of the coefficients al, a2, CD1, CO2, and Co3

are their limiting values at the realizability limit, i.e. when Uc, U,_, Dac_ --* O. For general

turbulent flows u_u,_ and Da_ are not zero and hence the values of the coefficients may

deviate from their limiting values. As was pointed out before, in general a's are functions

of II and III, and CD's are functions of the invariants formed by the anisotropic tensor

and the heat flux. Some guidance can be obtained by inspecting the following two useful

parameters (see Lumley 1978, and Shih and Lumley 1986)

F = 1 + 27III + 9II

27d2 9
Fd = 9 d_i - -'_ ii +'_

(3.18)

(3.19)

where

II =-!b_i'2 III= ._bi il3

m

0 2 uiuj -Oui Ou t

dij = _'5 UiUi __ OU'_i OU"_i
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It can be shownthat both F and Fd are bounded between 0 and 1, and particularly

F ---* 0 when u_u,_ --* 0

Fd _ O when D,_,_ _ O

By using this information, it is convenient to write

1

a, =--_0(1 + AF °') (3.20)

1

a2 = ]-6(1 + BF '_) (3.21)

1

Col = 1-6 + C, Fy (3.22)

-3

CD2 = 1"-'0+ C2F_ (3.23)

1

CD3 = "_ + C3F_ (3.24)

where A, B, C1, C2 and C3 are adjustable constants but a is not as arbitrary as it might

seem at first look. The condition (3.10) suggests a = ½ (see Lumley 1983, or Shih and

Lumley 1986). In the limiting case these coefficients reach their limiting values. Shih et

al (1985, 1987) took A = 0.8 and B = 0.0 which fit the DNS data quite well. However,

it seems more judicious to use homogeneous shear flow experiment to obtain the values

of these coefficients (this is not done in the present study). Shih ct al (1990) set C1 =

C2 = (73 = 0 in their computations. The present study indicates that the full form of

CDa,CD2 and CD3 should be used. The experiment of Tavalouris and Corrsin (1981)

suggests C1 = 1.8, C2 = -1.8, and (73 = 4.5.

Now returning to the modeling of the buoyancy terms Ykij and Yik, we assume that

these are functions of the anisotropic tensor and the heat flux. Their minimum forms

required to satisfy realizability are as follows

Y_kj

Yik

= I_l_ikOUj "J- _2(_ij_Uk "4- _jk_IZi) "3I- ]_3bik_Uj

+ fl4(bijOuk + bikOui ) + fls(_ijbkp + _kjbip)OUp

+ fl6_ikbjpOup + flTbikbjpOup + fls(bijbkp + bkjbo,)_u p

+ Z.b ,o j + + + 18ik bjpOUp

= 7102,5i_ + 7202bik + 730ui Ouk + 74(OukbipOU_, + _uibkpOUp)

+ 750"Tb_k + 76bipbkqOUp OUq

+ oui)

The above forms already satisfy the following symmetry conditions

(3.25)

(3.26)

" Ykii = Y ki, =

13



By definition, and incompressibility, thesetensorshavethe following additional properties:

Ykkj = O'_uj, Ykk = 0-7

Using these and the realizability conditions given in the last section, all except one coeffi-

cient can be determined exactly. Their final forms are

8, =4(1 - 85)
,)

(8_- 1)
82 =

3

_.(1- 11Z5)33
3

84 =85 - 1
- (12zr + 7)rA

f15 =
6II02q 2 - lOr2 -- 36IIrbr

8_ (2- 43_)
3

-7 5

f17 = 6I-'-_ + fls(_3ii - 1)

38 =335
7 5

3_ =6I--7 - 85(.5-77)

8,o =0
811 = -- 2fl5

312=0

(6r.2 + 1002 q2)
")'1--

902 q2

- 85

+ 76

[18(r 2 + 02 q2)rbr + r2(702 q2 _ 15r.2) + (36II- 10)(02 q2)2]

902 q2(r2_ 0 2 q2)

(q2/9)(3rb_.zr + 6IIr__ 2 - 2IIO 2 q2)

(d -
7(d) _

18iI(r 2 _ 02 q2) (6ii)O 2 q_(r 2 _ _-ff "qT)

m m

r2(6II + 28)- 02 q2(6II + 7)

- t35 [,r-_2(12II + 20) + 108IIrb_..£ + 02 q2(108I/2 - 21II- 5)

9ii(r 2_ 02 q2)

_ 5(3u + _)(d) _ ]
3Ii02 q2(r2_ 0 2 q2)

[r__22q2(18II + 4)+ 9q2rbv-O 2 q2(6II + 1)q 2+ 76
9(r 2 _ 02 q2)

14



r2 d
-- 30_(,.__ O_q_)l

-2 12r.r..b£.- 5r 2 +(12II- 1)02 q2

73 =_ +/35 _(d- o_q_)

6IIr_ + 3rb...2.r- 21102 q2
- 76

-3/35
74--

q2

3(d- 02q2)

m

7 (1811 - 5) q2 r_
75 =61---7+/35 311 + 76 (-5 _)
76 = undetermined coefficient

77 --0

m m

where r.2 = Oui Oui, rb._.r_r= Oui bij Ouj. These expressions may seem a bit complicated

but they ensure joint realizability. Since 76 is undetermined it was taken as zero in the

calculations to be presented later in this paper. As an illustration, Appendix B lists the

values of all the above coefficients as calculated from the buoyant plume experiment (1990).

3.4 Slow Terms

Lumley (1978) has suggested the following expression for the slow term of the pressure-
strain correlation

¢i.i =/3bi.i + 7(bikbk.i + 2II_ij/3) (3.27)

where/3 and 7 are, in general, functions of the invariants II and III, and the Reynolds num-

ber. Most of the workers have used Rotta's hypothesis which is obtained by ignoring the

nonlinear term. In LRR model,/3 is taken as a constant, whereas Lumley (1978) proposed

an expression involving II, III and the turbulence Reynolds number. This expression for/3

was calibrated from experiments in which invariant III was negative. Gcnce and Mathieu

(1980) and Choi (1983) experimentally studied the return to isotropy of homogeneous flows

and found that the return to isotropy is slower when the invariant iII is positive. Choi and

Lumley (1984) suggested keeping the complete form of (3.27) and using their experiments

proposed new forms of/3 and 7 (see Appendix C). We will use both Lumley (1978) and

Choi and Lumley (1984) models with the presently proposed models for the rapid term to
see how the combinations fair.

For the slow part of the pressure temperature-gradient correlation Shih and Lumley

(1985)proposed

_i = f_Oui + f2bikOUk (3.28)

Again most workers ignore the second term and take fl as a constant. Shih and Lumley
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(1986) and Shih et al (1990) usea variable form of ]'1 given by

!

/3 eo q2 (/3- 2)IId/6

fl = _ + O--_ e (IIa/3 + bij_i - biidij) + HF_/2 (3.29)

and take f2 as zero. The invariant lid appearing in the above expression is defined by

IId= (dijdii - _i)/2 (3.30)

This expression is based on the joint realizability principle and the parameter H is given in

Shih et al (1990) and/3 is the same as proposed by Lumley (1978). Both of these functions

are given in Appendix C. In the present study, we apply the joint realizability condition

to (3.28) keeping the full non-linear model for the pressure strain to obtain

u

_oq= (/3+ 7sz- 2)_rz.16
fl =2 + 0-_e (Hdl3 + bii_ i - biidii)

2 b?dij) HFdl 2+ ._(-H _rxd+ b_i_i -
(Zld/3 + b_i_j - b_idii) +

(3.31)

where/3 and 7 are the same coefficients as appearing in (3.27). For ? = 0, the Shih and

Lumley (1986) model is recovered. In the present study we used the/3 and 3' as given by

Choi and Lumley (1984) and these are reproduced in Appendix C.The above expression

seems to give better agreement with the experiments. In the experiments analysed, the

value of fl varied from 6.4 - 8.0. The values used by Zeman and Lumley (1976), fl = 7.5,

and Newman et al (1981), fl = 6.6, fall within this range.

3.5 Other Models

Other researchers, who employ the realizability concept, approach the models for

pressure correlation terms in a similar but slightly different way. Craft et al. (1989) have

proposed non-linear models for these correlations. They start with the similar form of

the models as Shih and Lumley (1985), but apply realizability based only on uo, u_ _ O.

Their models do not satisfy joint realizability and, therefore, are not fully realizable when

a scalar is present. If we impose these conditions on their models, their coefficients must be

changed such that their models will reduce to the same form as proposed here. Reynolds

(1987) obtained a set of model constraints using 2D-2C conditions on Xpjqi which also

ensure realizability. His model keeps fourth powers of bij and , therefore, is more general.

However, regardless of the complexity of the model form, the comparison between his

model and the DNS data did not show significant improvement over the other models.
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4. Comparison between Models and Experiments

For model evaluation we will use the homogeneous shear flow experiment of Tavoularis

and Corrsin (1981), DNS of the same flow by Rogers et al (1986) and the buoyant plume

experiment of Shabbir and George (1990) and Shabbir (1991). Note that for the homo-

geneous shear flow the buoyancy effects are negligible. For the experiments the pressure

terms were obtained as the closing terms in the balances for the Reynolds stress and heat

flux equations. The pressure correlations obtained in this fashion will certainly have some

error but this is the closest we can come in obtaining these from the experiment. Also a

direct comparison between these and their models is still a better approach in establishing

their accuracy rather than solving the differential equations and then comparing the mean

flow results etc. with the experiments.

4.1 Pressure Strain Correlation

First we look at the comparison between the pressure strain models and the experi-

ment of Tavoularis and Corrsin (1981). The velocity field of this experiment is essentially

the same as that of Harris et (1977) and, therefore, the results presented here are applicable

to that experiment as well. Figure (1) shows a comparison between tile experiment and

five different models. The two complete linear models are Launder et al (1975) (LRR) and

Zeman and Lumley (1976) and these are of the exact same form except the model coeffi-

cients. Of the two, the Zeman and Lumley model seems to give a better overall agreement

with the data. The Shih and Lumley (1985) model uses linear form for the slow term with

13 given by Lumley (1978) and is off by a large margin. This is because fl of Lumley (1978)

was calibrated against flows with negative III whereas for the experiment under consider-

ation this invariant is positive. When instead the Choi and Lumley (1984) model is used

for the slow term, all the pressure strain components are predicted within experimental

accuracy. Craft et al (1989) also does a good job in predicting all the components. This is

to be expected since the coefficients in their model are determined from the homogeneous

shear flow experiment.

Figure (2) compares the slow term models with the DNS (19S6) results of the ho-

mogeneous shear flow. Lumley's (1978) linear and the Choi and Lumley (1984) nonlinear

models give the best agreement with the data. Recall that these two models gave very

different results for the experiment of Tavoularis and Corrsin (19S1). Unlike that experi-

ment, the Reynolds number in the DNS is much smaller. Both of these models incorporate

the similar low Reynolds number behavior and, therefore, give similar overall results. Both

the Zeman and Lumley (1976) and LRR (1975) model are off the data. The non-linear

model of Craft et al (1989) performs well only for the ¢I'xx and _5_.y components. Figure (3)

compares the three different models for the rapid pressure term with the DNS of Rogers et

al (1986). Of the three Shih and Lumley (1985) non-linear model gives the best agreement.

The LRR (1975) model performs reasonably only for the II_ pill mid II_ pi°t components.
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We also note that the Craft et. al. model performs better than the LRR model.

Figure (4) comparesthe total pressure-strainmodelsfor the buoyant plume experiment
of Shabbir and George (1990). For the streamwisecomponent the Zeman and Lumley
(1976) model gives the best agreement. The Shih and Lumley (1985) and LRR (1975)
modelsareoff the experiment near the centerlineof the plume but arc within experimental
uncertainty for the rest of the flow. Craft et. al. (1989) overprcdicts while Shih-Choi-
Lumley underpredicts the experiment. For the radial component Zeman and Lumley
(1976) model performs the best and, except for Shih-Choi-Lumley, all the other models
give reasonableagreementwith the experiment. For the H_, component,which is the most
important one, Shih-Choi-Lumley, LRR (1975) and Craft et. al. (1989) are in excellent
agreementwith the experiment. Zeman and Lumley (1976) is also within experimental
uncertainty where asShih and Lumley (1985) overestimatesthe experiment. We note that
no singlemodel givesgood agreementwith all the flows. It is our feeling that the source
of this is either the coefficientsfor the slow term or the rapid term ( a2, given by equation

(3.20) was assigned its limiting value). Further work is uderway in order to sort this out.

4.2 Pressure Temperature-Gradlent Correlation

Nowwe compare the models for the pressure-temperature gradient correlations with

the same three flows. First we look at the experiment of Tavoularis and Corrsin (1981)

(figure 5). For the streamwise correlation Shih and Lumley (1985) and the present model

provide the best agreement with the data. The Craft et. al. (1989) model overpredicts the

data whereas Zeman and Lumley (1976) underpredicts it. The linear model of Launder

(1975) does a reasonable job. For the correlation in the cross-stream direction the present

model gives the best result and all the other models underpredict the experiment. Since

this experiment was used in adjusting the constants in the present, model, this comparison

does not provide a true test for this model.

Figure (6) shows a similar comparison with the DNS of Rogers et. al. (1986) for the

same flow. For the streamwise correlation, again Shih and Lumlcy and the present model

give the best agreement with the data. The non-linear model of Craft et. al. (1989) and

the linear model of Launder (1975) also give reasonable results. For the correlation in

the cross-stream direction, however, none of the models predict the data, although at the

initial stages of the flow the Launder model does a satisfactory job. However,toward the

last part of the simulation, where the simulation is more developed, the Launder (1975)

model underestimates the simulation by 40%. At the same location the present model

overestimates the data by the same amount.

The same models are compared with the buoyant plume experiment of Shabbir and

George (1990) in figure (7). For the streamwise component we note that the present

model gives excellent agreement with the experiment. Both Shill and Lumley (1985) and

Zeman and Lumley (1976) models also do a reasonable job whereas the rest of the models
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underpredict the experiment. For the radial component, IIr, the present model somewhat
underpredicts the data near the central part of the plume, but produces the correct peak
value and gives a very satisfactory overall agreementwith the experinaent. The rest of
the modelsare off by a large margin. Note that the prediction of the radial component is
extremely important for the correct calculation of the mean buoyancy field.
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APPENDIX A

The following are the exact expressions for the rapid and buoyancy contributions to

the pressure-strain and pressure scalar-gradient correlations.

Xpiqi = - (1/4rr) / f fv[Uq(r)ui(rt)],pjdv/[r - r'[

Xi./t =- (1/47r)f f fv[Uk(r)Oj(r')],jidv/[r--r',

Ykij = -- (1/4a') f f fv[uj(r)O(rt)],kidv/lr - r'l

The slow terms are defined by the following expressions

-e_ij e =(1/p)p,t(ui,j + uj,i) - 2uui,kuj,k + 2e3ij/3

--_i e/q 2 =(1/p)pstO,i -- (v + 7)O,kui,k

The total (i.e. sum of the slow, rapid and buoyancy parts) pressure strain and pressure

scalar-gradient correlation has been denoted by IIij and Hi respectivcly.

23



APPENDIX B

The values of the model coefficients fl's and 7's as calculated from the buoyant plume

experiment of Shabbir and George (1990)

r/z #1 #2 #3 #, #s
0.00 0.47 -0.12 -2.05 -0.35 0.65

0.01 0.47 -0.12 -2.04 -0.35 0.65

0.02 0.48 -0.12 -2.02 -0.36 0.64

0.03 0.49 -0.12 -1.99 -0.37 0.63

0.04 0.50 -0.12 -1.96 -0.37 0.63

0.05 0.51 -0.13 -1.93 -0.38 0.62

0.06 0.52 -0.13 -1.91 -0.39 0.61

0.07 0.53 -0.13 -1.88 -0.40 0.60

0.08 0.53 -0.13 -1.86 -0.40 0.60

0.09 0.54 -0.14 -1.84 -0.41 0.59

0.I0 0.55 -0.14 -1.83 -0.41 0.59

0.Ii 0.55 -0.14 -1.81 -0.41 0.59

0.12 0.56 -0.14 -1.80 -0.42 0.58

0.13 0.56 -0.14 -1.79 -0.42 0.58

0.14 0.56 -0.14 -1.79 -0.42 0.58

0.15 0.56 -0.14 -1.80 -0.42 0.58

0.16 0.56 -0.14 -1.81 -0.42 0.58

0.17 0.55 -0.14 -1.83 -0.41 0.59

0.18 0.54 -0.13 -1.85 -0.40 0.60

-0

-0

-0

-0

-0

-0

-0

-0

&
.20

20

19

18

17

16

15

14

-0 13

-0.13

-0.12

-0.II

-0.ii

-0.11

-0.II

-0.11

-0.II

-0.12

-0.13

6.40

6.20

5.72

5.16

4.66

4.28

4.01

3.83

3.73

3.69

3.68

3.70

3.74

3 ..78

3.83

3.87

3.91

3.93

3.93

1.95

1.94

1.93

1.90

1.88

1.85

1 83

1 81

1 80

1 78

1 77

1 76

1 75

1 74

1 74

1 74

1.75

1.77

1.79

-7.05

-6.85

-6.36

-5.79

-5.29

-4.90

-4.62

-4.44

-4.33

-4.28

-4.27

-4.28

-4.32

-4 36

-4 41

-4 45

-4 49

-4 51

-4 53

-1.30

-1.30

-1.28

-1.27

-i 25

-i 24

-I 22

-I 21

-i 20

-i 19

-i 18

-i 17

-i 16

-i 16

-I 16

-I 16

-i. 17

-1.18

-1.19

r/z 71 72 73 74

0.00 0.41 -2.82 -0.36 "0.81

0.01 0.41 -2.75 -0.35 -0.81

0.02 0.42 -2.58 -0.34 -0.80

0.03 0.42 -2.39 -0.32 -0.79

0.04 0.43 -2.22 -0.30 -0.79

0.05 0.43 -2.10 -0.28 -0.79

0.06 0.44 -2.01 -0.27 -0.81

0.07 0.44 -1.95 -0.27 -0.83

0.08 0.44 -1.92 -0.28 -0.87

0.09 0.44 -1.91 -0.30 -0.93

0.10 0.44 -1.91 -0.33 -I.00

0 .ii 0.44 -1.92 -0.37 -1.09

0.12 0.45 -1.94 -0.41 -1.21

0.13 0.45 -1.96 -0.47 -1.35

0.14 0.44 -1.98 -0.53 -1.53

0.15 0.44 -2.00 -0.59 -1.75

0.16 0.44 -2.02 -0.64 -2.02

0.17 0.43 -2.03 -0.69 -2.35

0.18 0.42 -2.05 -0.71 -2.76

75

-3.is
-2.96
-2.51

-i. 99

-i .53

-i .19

-0.95

-0.81

-0.74

-0.72

-0.73

-0.77

-0.83

-0.88

-0.93

-0.97

-0.99

-0.98

-0.95
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APPENDIX C

Here we list the various model coefficients for the slow terms used in the present study.

The coefficient fl used in the Shih and Lumley (1985) model is the one suggested by Lumley

(1978) and is

fl =2 + exp[-7.77/R_/2]

1

{72/RI/_+ SO.lln[1+ 62.4(-u +2.311111}(_ + 3m + ii)

The function H appearing in (3.29) and (3.30) is taken from Shih et. al. (1990) and is

given by

H = 1.1 + 0.55(fl- 1)tanh[4(_ - 1)]

The coefficients fl and 3' appearing in equation (3.27) and suggestcd by Choi and Lumley

(1984) are given by

p,F1� 2
fl =2 +

(1 + Gx2)
p*F 1/2 G

=(1 + Gx_)

where

=(m/2) '/_, _ = (-1i/3),/_

'_ G = -x 4X =-, + 0.8X 6
r/

p, =ezp[_9.29/R_/21{, 7.69 73.7) _ [296 - 16.2(_ + 1)41II}
(R--_ + R,

For the Zeman and Lumely (1976) model following set of coefficiefits were used

1 [1 + (1 - 24II) '/2]
f -- (-15II)

q2c e .
f, =(_ + -_-)

Note that these revised coefficients are taken from Zeman (1981) and are different from

the values originally used by Zeman and Lumley (1976). It should also be pointed out that

the expression for fl is clipped at 6.0.
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